## SANT GADGE BABA AMARAVATI UNIVERSITY, AMARAVATI. SUMMER EXAMINATION-2020

H.V.P.M.'s College of Engineering and Technology, Amravati.

Department of Electronics and Telecommunication

Bachelor of Engineering Semester IV.

Subject: Network Analysis Subject code: 4XT03

## Instructions:-

- i) Solve any two questions.
- ii) ii) All questions carry equal marks.

| Que 1 | a) | Determine current through $10\Omega$ resistance from the network shown in Figure 1a. using source transformations. | 2 credit pts |
|-------|----|--------------------------------------------------------------------------------------------------------------------|--------------|
|       | b) | Explain following terms i) Tree ii) Co- tree, write down properties Of tree.                                       | 2 credit pts |
|       | c) | Verify initial value theorem for the function $f(t) = 50 - 6t + e^{-5t}$                                           | 2 credit pts |
|       | d) | State & explain maximum power transfer theorem.                                                                    | 2 credit pts |
|       | e) | Find reciprocity& symmetry condition of two port network in terms Of inverse hybrid parameter.                     | 1 credit pts |
|       | f) | Explain necessary condition for driving point and transfer function.                                               | 1 credit pts |
| Que 2 | a) | Calculate the value of single equivalent inductance for circuit shown in Figure 2a seen from terminal X, Y         | 2 credit pts |
|       | b) | Draw the dual of the network shown in figure 2b.                                                                   | 2 credit pts |
|       | c) | State and prove initial and final value theorem.                                                                   | 2 credit pts |
|       | d) | Determine current through 1 $\Omega$ resistance using super position theorem                                       | 2 credit pts |
|       | e) | From fig.2d. Explain following terms i) Network function ii) driving point, iii) transfer function                 | 1 credit pts |
|       | f) | Explain necessary condition for transfer function.                                                                 | 1 credit pts |
| Que 3 | a) | Draw the dotted equivalent of the circuit shown in fig.3a & find                                                   | 2 credit pts |
|       |    | Equivalent impedance.                                                                                              |              |
|       | b) | Draw graph of the network shown in fig. 3b. find no. of possible trees and draw all possible trees.                | 2 credit pts |
|       | c) | Find initial and final value for the function.<br>f(s) = 2S+5/(S+1) (S+2)                                          | 2 credit pts |
|       | d) | Determine current through 1 $\Omega$ resistance using the venin's theorem From fig.2d                              | 2 credit pts |
|       | e) | Determine the relationship between hybrid parameter in terms of Transmissions parameter.                           | 1 credit pts |
|       | f) | Plot pole zero plot for the function and obtain i(t) I(S) = 10S / (S+4) (S+6)                                      | 1 credit pts |
|       |    |                                                                                                                    |              |

