SANT GADGE BABA AMARAVATI UNIVERSITY, AMARAVATI. SUMMER EXAMINATION-2020

H.V.P.M.'s College of Engineering and Technology, Amravati.
Department of Electronics and Telecommunication
Bachelor of Engineering Semester IV.

Subject: Digital Electronics - I

Subject code: 4ET4

Instructions:-

- i) Solve any two questions.
- ii) All questions carry equal marks.
- Que 1 a)

 Explain in brief Transistor-Transistor logic {TTL) circuit with active pull up arrangements. Verify the logic operations given by TTL
 - Minimize the following logic function and realize using NAND gates only. $f_1(A, B, C, D) = \sum_{i=0}^{\infty} m(1,3,5,8,9,11,15) + d(2,13)$
 - Implement the following logical expression using 8:1 MUX $F = \sum_{i=1}^{n} m(0,1,2,3,4,10,11,14,15)$ 2 credit pts
 - What is Race around condition? I low it is overcome? Explain
 master-slave I-K flip flop with proper table
 - Obtain reduced stale table and reduced state diagram for the sequential machine whose state diagram is shown below

f) Explain in brief (i) PROM (ii) EEPROM (iii) EPROM 1 credit pts

Que 2	a)	Perform the following using 2's compliment method $(1) (48)_{10} - (23)_{10}$	2 credit pts	
		$(2) (48)_{10} - (-23)_{10}$		
		$(3) (-48)_{10} - (23)_{10}$		
	b)	Design the combinational circuit for full adder God implements it using suitable gates.	2 credit pts	
	c)	Design 5-line to 32 line decoder circuit using 4-line to 16-line decoders and suitable gate.	2 credit pts	
	d)	Design 4-bit parallel in serial out right shift register using D-Flip Flops and suitable gates.	2 credit pts	
	e)	The state diagram and state table for a Moore type sequence detector to detect the sequence 11 10	1 credit pts	
	f)	Explain the working of dynamic RAM cell.	1 credit pts	
Que 3	a)	1)Perform the following:	2 credit pts	
		(i) $(BC5)_{16} - (A2B)_{16} = (?)_2$, (ii) $(287)_{10} = (?)_{gray}$		
		(iii) $(0.65625)_{10}$ = (?) ₂ (iv) $(327.89)_{10}$ = (?) _{BCD}		
	b)	Design and explain one digit BCD adder circuit using 4-bit adder IC 74LS83 and required gates. Explain with the help of suitable example.	2 credit pts	
	c)	Design 5-bit comparator using single 7485 IC and suitable gate. Also explain its operation	2 credit pts	
	d)	State differences between synchronous and asynchronous counters,	2 credit pts	
	e)	Design a clocked sequential circuit using T-Flip Flops and suitable gates for the state given below	1 credit pts	
		2/1 (2)20	/1	

f) Explain the read cycle timing parameters of a memory using proper timing 1 credit pts diagram

Que 4	a)	Explain TTL with active pull up. Give its significance.	2 !!
	b)	Design binary to gray code converter circuit using suitable gate.	2 credit pts
	e)	the truth table for an ROM to implement the given function : $f=\sum m(1,2,4,6)$ 2 credit pts	2 credit pts
	d)	Design a synchronous counter to count the sequence 1-2-5-3-0-7 using T- F-F.	
	e)	Define an asynchronous sequential circuits. How its differs from	2 credit pts
		synchronous sequential circuits,	1 credit pts
	f)	With neat circuit diagram explain the operation of bipolar	
		static RAM Cell	1 credit nts