SANT GADGE BABA AMRVATI UNIVERSITY, AMRAVATI **Summer Examination 2020**

HVPM's College of Engineering and Technology, Amravati **Department of First Year Engineering** Bachelor of Engineering Sem. :- I & II

Subject:-Engineering Mathematics II

Code :- IBI

Instructions:-

- 1) Solve any two questions
- 2) All question carry equal marks

Q1.

a) By using method of partitioning find inverse of A where

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 3 & 2 \\ -1 & 2 & 1 \end{bmatrix}$$

02 Credit Point

b) Obtain the Fourier series to represent $f(x) = \frac{1}{4}(\pi - x)^2$ 0 < $x < 2\pi$ 02 Credit Point

c) Verify the rule of DUIS for the integral $\int_{a}^{a^{2}} logax dx$

01 Credit Point

d) Show that the reduction formula for $I_{m,n} = \int cos^m x \ cosnx \ dx$ is

 $(m+n)I_{m,n} = \cos^m x \cos nx + m I_{m-1,n-1}$

02 Credit Point

01 Credit Point

e) Evaluate $\iint \frac{dx \, dy}{x^4 + y^2}$ where $x \ge 1, y \ge x^2$ f) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x + \log y} e^{x + y + z} dz \, dy \, dx$

02 Credit Point

Q2.

a) Find all the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

02 Credit Point

]b)Find the Fourier series of f(x) = 0, -2 < x < -1

$$k, -1 < x < 1$$

0,
$$1 < x < 2$$

02 Credit Point

c) Show that the volume of the tetrahedron having $\bar{A} + \bar{B}$, $\bar{B} + \bar{C}$ $\bar{C} + \bar{A}$ as concurrent edges is twice the volume of tetrahedron having as concurrent edges **01 Credit Point**

d) Find the perimeter of the curve $r=a(1-\cos\theta)$

01 Credit Point

e) Evaluate $\iint (x+y)^2 dxdy$ over the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

02 Credit Point

f) Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$

02 Credit Point

Q3.

a) Determine the rank of A,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$

02 Credit Point

b) If
$$f(x) = mx$$
, $0 \le x \le \frac{\pi}{2}$
= $m(\pi - x)$, $\frac{\pi}{2} \le x \le \pi$

show that
$$f(x) = \frac{4m}{\pi} \left(\frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} \right)$$

02 Credit Point

- c) Show that $i x (\bar{a} x i) + j x (\bar{a} x j) + k x (\bar{a} x k) = 2\bar{a}$
- **01 Credit Point**
- d) If $I_n = \int_0^{\pi/4} tan^n \theta \ d\theta$ then prove that $I_n + I_{n-2} = \frac{1}{n-1}$

01 Credit Point

- e) change the order of integration and hence evaluate $\int_0^a \int_0^{2\sqrt{x}a} x^2 dx dy$ **02 Credit Point**
- f) Evaluate $\iint \int \frac{1}{x^2 + y^2 + z^2} dx dy dz$ throughout the volume of sphere $x^2 + y^2 + z^2 = a^2$

02 Credit Point

Q4.

- a) Determine for what values of λ and μ the system of equations: 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, $2x + 3y + \lambda z = \mu$ have (i) No solution (ii) unique solution (iii) An infinite no of solution. **02 Credit Point**
- b) The following table gives the variation of periodic current over a period

0	$T/_6$	$T/_3$	$T/_2$	$^{2T}/_{3}$	$5T/_{6}$	T
1.98	1.30	1.05	1.30	- 0.88	- 0,25	1.98

02 Credit Point

c) i] Prove that
$$\begin{bmatrix} \bar{a}x \ \bar{b} \end{bmatrix} \bar{b}x \bar{c} \bar{c}x \bar{a} = \begin{vmatrix} \bar{a}.\bar{a} & \bar{a}.\bar{b} & \bar{a}.\bar{c} \\ \bar{b}.\bar{a} & \bar{b}.\bar{b} & \bar{b}.\bar{c} \\ \bar{c}.\bar{a} & \bar{c}.\bar{b} & \bar{c}.\bar{c} \end{vmatrix}$$

ii] Find the volume of tetrahedron with vertices at the points (0,0,0), (1,1,1), (2,1,1),

02 Credit Point

d) Show that
$$B(m, m). B\left(m + \frac{1}{2}, m + \frac{1}{2}\right) = \frac{\pi}{m} 2^{1-4m}$$

01 Credit Point

e) Evaluate
$$\int_0^a \int_y^a \frac{x}{x^2+y^2} dx dy$$
 by changing into polar coordinates.

02 Credit Point

f) Show by triple integration the volume of sphere of radius a is
$$\frac{4\pi a^3}{3}$$

01 Credit Point