# SANT GADGE BABA AMRVATI UNIVERSITY, AMRAVATI Summer Examination 2020 Credit Point <br> HVPM's College of Engineering and Technology, Amravati Department of Electronics \& Tele communication Engineering Bachelor of Engineering Sem. :- VI 

## Subject :-Digital Integrated Circuits

Code :- 6XT1

## Instructions:-

## 1) Solve any two questions

2) All question carry equal marks

Q1.
a) Design a 3 input combinational ckt. Where $\mathrm{o} / \mathrm{p}$ is equal to 1 if the $\mathrm{i} / \mathrm{p}$

Variable have more 1 's than 0 's, otherwise logic 0
b) Design 32:1 mux using 4:1 Mux

02 Credit Point
c) Design the look ahead carry adder and explain its operation

02 Credit Point
d) Convert S-R FF to J-K FF

02 Credit Point
e) What are races . Explain critical and non critical races .

01 Credit Point
f) State and explain the condition under which faults can't be located

## 01 Credit Point

Q2.
a) Prove that SOP and POS expression are equivalent for bit systems with suitable example 02 Credit Point
b) Design 10 bit odd parity generator using IC 74180

02 Credit Point
c) Explain the working of FPGA

02 Credit Point
d) Explain how SM chart differs from a conventional flowchart using suitable example.

02 Credit Point
e) Explain various hazards in asynchronous circuits . Explain how static 0 hazards can be eliminated

01 Credit Point
f) Explain how two level faults can be detected. Illustrate with suitable examples.

01 Credit Point
Q3.
a) Simplify the following expression and realize using NOR / NAND gate only. $\mathbf{0 2}$ Credit Point

$$
\begin{aligned}
\text { 1) } \mathrm{F} 1 & =\sum_{\mathrm{m}}^{\mathrm{m}}(1,3,5,8,9,11,15)+\mathrm{d}(2,13) \\
\text { 2) } \mathrm{F} 2 & =\mathrm{M}_{(1,2,3,8,9,10,11,14) \cdot \mathrm{d}(7,15)}
\end{aligned}
$$

b) Design 8 bit comparator using IC 7485 with truth table

02 Credit Point
c) The truth table for an ROM to implement the given function : $\mathrm{f}=\sum \mathrm{m}(1,2,4,6)$

02 Credit Point
d) Design a synchronous counter to count the sequence 1-2-5-3-0-7 using T- F-F.

02 Credit Point
e) Define an asynchronous sequential circuits . How its differs from synchronous sequential circuits.

Q4.
a) Simplify the following logic function using Quine-Mc Cluskey

02 Credit Point minimization technique. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,4,9,10,15)+\mathrm{d}(6,7,8,11)$
b) Design EX-3 to BCD code converter

02 Credit Point
c) Explain ROM as ROM 02 Credit Point
d) Differentiate between Mealy model and Moore of a sequential circuit

02 Credit Point
e) Explain the following with respects to an asynchronous sequential ckt. (i) primitive flow table (ii) Merger diagram

01 Credit Point
f) Find minimal test set to detect all faults in the ckt. Shown

01 Credit Point

