SANT GADGE BABA AMRVATI UNIVERSITY, AMRAVATI **Summer Examination 2020 Credit Point**

HVPM's College of Engineering and Technology, Amravati **Department of Electronics & Tele communication Engineering Bachelor of Engineering Sem. :- VI**

Subject :-Digital Integrated Circuits Code :- 6XT1

Instructions:-				
1	Solve any two questions			
2	All question carry equal marks			
				
Q1.				
a)	Design a 3 input combinational ckt. Where o/p is equal to 1 if the i/p Variable have more 1's than 0's, otherwise logic 0	02 Credit Point		
b	Design 32:1 mux using 4:1 Mux	02 Credit Point		
c)	Design the look ahead carry adder and explain its operation	02 Credit Point		
d)	Convert S-R FF to J-K FF	02 Credit Point		
e)	What are races. Explain critical and non critical races.	01 Credit Point		
f)	State and explain the condition under which faults can't be located			
		01 Credit Point		
Q2.				
a)	Prove that SOP and POS expression are equivalent for bit systems with sui	table example		
		02 Credit Point		
b)	Design 10 bit odd parity generator using IC 74180	02 Credit Point		
c)	Explain the working of FPGA	02 Credit Point		
d)	Explain how SM chart differs from a conventional flowchart using suitable	e example.		
		02 Credit Point		
e)	Explain various hazards in asynchronous circuits . Explain how static 0 haz			
		01 Credit Point		
f)	Explain how two level faults can be detected. Illustrate with suitable exam	•		
Q3.		01 Credit Point		
a)	Simplify the following expression and realize using NOR / NAND gate on 1) F1= $\sum m (1,3,5,8,9,11,15) + d(2,13)$	ly. 02 Credit Point		
	2) F2= \prod M (1,2,3,8,9,10,11,14) . d(7,15)			
b) c)	Design 8 bit comparator using IC 7485 with truth table	02 Credit Point (6)		

02 Credit Point

d) Design a synchronous counter to count the sequence 1-2-5-3-0-7 using T- F-F.

02 Credit Point

e) Define an asynchronous sequential circuits . How its differs from synchronous sequential circuits.

01Credit Point

Q4.		
a)	Simplify the following logic function using Quine-Mc Cluskey minimization technique. $F(A,B,C,D) = \sum m(1,4,9,10,15) + d(6,7,8,11)$	02 Credit Point
b)	Design EX-3 to BCD code converter	02 Credit Point
c)	Explain ROM as ROM	02 Credit Point
d)	Differentiate between Mealy model and Moore of a sequential circuit	
		02 Credit Point
e)	Explain the following with respects to an asynchronous sequential ckt. (i) p	primitive flow table (ii)

01Credit Point

01 Credit Point

01 Credit Point

f) Explain fault detection by ckt. Test approach

f) Find minimal test set to detect all faults in the ckt. Shown

Merger diagram