SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI Hanuman Vyayam Prasarak Mandals's College of Engineering & Technology, Amravati

B.E Four year Semester IV (Computer Science & Engineering) Summer 2020 Exam Subject: 3KS04 Discrete Structures Assignment for ONLY BACKLOG STUDENTS

Instructions

- 1) Solve ANY TWO Questions
- 2) Each Question Carries 10 marks

Q I) Solve the following		
1) Show that $A \rightarrow (P \lor C) \Leftrightarrow (A \land \neg P) \rightarrow C$	[2M]	
2) Show that, $(G \vee H)$ is a valid conclusion for $(B \wedge C)$, $(B \wedge C) \rightarrow (H \vee G)$.	[2M]	
	[0] (]	
3) Explain with example: i. Proper subset ii. Universal set4) Explain: i. Group ii. Subgroup	[2M]	
5) Prove the Boolean identities	[2M]	
i. $a * (a' \oplus b) = a * b$ ii. $(a * b) \oplus (a * b') = a$	[1M]	
6) Traverse the following with three techniques: inorder, preorder and post order.		
QII) Solve the following		
1) Write inverse, converse and contra-positive of $A \rightarrow B$	[1 M]	
2) Show that $(\exists x)M(x)$ follows logically from the premises $(x)(H(x) \to M(x))$ and $(\exists x)H(x)$	I(x). [2 M]	
3) Define: i. Intersection ii. Union	[1M]	
4) What is coset ? Find the left coset of $\{[0], [4]\}$ in group $(\mathbb{Z}_7, +7)$.	[2M]	
5) Draw the Lattice diagram of D ₃₀	[2M]	
6) Show that the sum of indegrees of all the nodes of a simple diagraph is equal to the su out degrees of all its nodes and that sum is equal to the number of edges of the graph.	m or [2M]	
out degrees of all its nodes and that sum is equal to the number of edges of the graph.	[211]	
QIII) Solve the following		
1) Truth table result of statement formula $((P \land Q) \rightarrow R)v$ R		
(i) TFTFTTTT (ii) TFTTTTTT		
(iii) TFFTTTTT (iv) TFTFTFTF	[2M]	
2) Show that, $(C \vee D)$ is a valid conclusion for $(A \wedge B)$, $(A \wedge B) \rightarrow (C \vee D)$.	[1M]	
3) Let $P = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle\}$ and $Q = \{\langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 4, 2 \rangle\}$.		
Find $P \cup Q$, $P \cap Q$, $D(P)$, $D(Q)$, $R(P)$, $R(Q)$	[2M]	
4) Explain: i. Group ii. Monoid	[2M]	
5) For the function $f = x+y+z$ Give		
i) The circuit diagram representation. ii) The truth table representation.	[2M]	
6) Prove that let $G = \{V, E\}$ be a graph the sum of the degrees of all the nodes in V is twice		
the number of edges in E.	[1M]	

QIV) Solve the following

1) What is statement formula? What are the rules for generating well-formed formula?	[2M]
2) Show that, $(C \vee D)$ is a valid conclusion for $(A \wedge B)$, $(A \wedge B) \rightarrow (C \vee D)$.	[1M]
3) Explain with example: i. Set, ii. Subset	[2M]
4) Show that if every element in a group is its own inverse, then the group must be Abelian.	[2M]
5) Find the complement of every element of the lattice $\langle S_n, D \rangle$ for $n = 75$.	[2M]
6) Give the directed tree representation of the following formula	
$(P \lor (\neg P \land Q)) \land ((\neg P \lor Q) \land \neg R)$	[1M]