SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI Hanuman Vyayam Prasarak Mandals's College of Engineering & Technology, Amravati Course: Information Technology BE Four year Semester (Information technology) Summer 2020 Exam Subject: 3IT03 Discrete Structures <u>Assignment for ONLY BACKLOG STUDENTS</u>

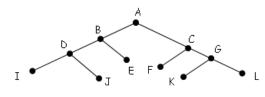
Instructions

1)	Solve	ANY	TWO	Questions
----	-------	-----	-----	-----------

2) Each Question Carries 10 marks

QI) Solve the following

1) Write inverse, converse and contra-positive of $\mathbf{A} \rightarrow \mathbf{B}$			
 2) Define: Intersection Union 3) What is coset ? Find the left coset of {[0], [4]} in group (Z₇,+₇). 	[1M] [2M]		
4) Draw the Lattice diagram of D ₆₀			
5) Show that the sum of indegrees of all the nodes of a simple diagraph is equal to the sum of			
out degrees of all its nodes and that sum is equal to the number of edges of the graph.	[2M]		
6) Construct DFA for divisible by 5 acceptor.			


Q II) Solve the following

1)Show that $A \to (P \lor C) \Leftrightarrow (A \land \neg P) \to C$ [2M]2) Explain with example: i. Proper subsetii. Universal set[2M]3) Explain: i. Groupii. Subgroup[2M]

4) Prove the Boolean identities

i.
$$a * (a' \oplus b) = a * b$$
 ii. $(a * b) \oplus (a * b') = a$ [1M]

5) Traverse the following with three techniques: inorder, preorder and post order.

[1M]

6) Define Deterministic Finite Automata(DFA)

QIII) Solve the following

1) What is statement formula? What are the rules for generating		
well-formed formula?	[2M]	
2) Explain with example: i. Set, ii. Subset	[2M]	
3) Show that if every element in a group is its own inverse, then the group must be		
Abelian.	[2M]	
4) Find the complement of every element of the lattice		
$$ for $n = 75.$ [2M]		
5) Give the directed tree representation of the following formula		
$(P \lor (\neg P \land Q)) \land ((\neg P \lor Q) \land \neg R)$		
	[1M]	
6) Define Non Deterministic Finite Automata	[1M]	

[2M]

QIV) Solve the following

1)	Truth table result of statement formula ((P∧Q)→R)v R (i) TFTFTTTT (iii) TFFTTTTT	(ii) TFTTTTTT (iv) TFTFTFTF	[2M]
2)	Let P = {<1, 2>, <2, 4>, <3, 3>} and Q = {<1, 3>, <2, 4>, <4,	2>}.	
	Find $P \cup Q$, $P \cap Q$, $D(P)$, $D(Q)$, $R(P)$, $R(Q)$		[2M]
3)	Explain: i. Group		
	ii. Monoid		[2M]
4)	For the function $f = x+y+z$ Give		
	i)The circuit diagram representation. ii) The truth table re-	presentation.	[2M]
5)	Prove that let $G = \{V, E\}$ be a graph the sum of the degrees number of edges in E.	of all the nodes in V is t	wice the [1M]
6)	Give Difference between NFA and DFA		[1M]