SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI

Summer Examination 2020

HVPM's College of Engineering and Technology, Amravati

Department of Electronics & Telecommunication Engineering

Bachelor of Engineering Sem :- VII

Subject : SOFC

Code: 7ET3

Instructions:

1) Solve any two questions

2) All questions carry equal marks

Que. 1		
a	State and prove Kepler's third law.	2 credit point
b	Explain in brief the concept of noise temperature in satellite link with the	2 credit point
	help of necessary expression.	-
c	Explain in brief two-way implementation architecture for VSAT network.	2 credit point
d	Explain with the help of neat diagram the light propagation in parabolic	2 credit point
	profile graded index fiber. Also state no of supported modes. Enlist the	
	advantages of graded index multimode fiber over step index multimode	
	fiber.	
e	Explain with the help of neat diagram 1) stimulated emission, 2) population	1 credit point
	inversion in laser.	
f	Enlist and elaborate performance and compatibility requirement for optical	1 credit point
	detectors.	
Que. 2		
a	Explain in brief Solar Eclipse.	2 credit point
b	Discuss the various parameter to be considered while designing a	2 credit point
	downloading budget in satellite communication system.	
c	Explain in brief the satellite signal acquisition in GPS.	2 credit point
d	when the mean optical power launched into 8km length of the fiber is	2 credit point
	120μ W, the mean optical power at the fiber output is 3μ W. determine 1)	
	overall signal attenuation in dB, assuming no connectors and splices in	
	between. 2) the signal attenuation per kilometer of the fiber 3) the overall	
	signal attenuation for a 10 km optical link using the same fiber with splices	
	at 1Km interval, each giving attenuation of 1dB.	
e	Derive an expression for coupling efficiency of LED.	1 credit point
f	A germanium PIN photodiode with active dimension of $100 * 500 \mu m$ has	1 credit point
	quantum efficiency of 55 % when operating of 1.3µm. the measured dark	
	current at this wavelength is 8nA. Calculate the noise equivalent power and	
	specific detectivity for the device. (Assume that the dark current is a	
	dominant noise source) (Given that $h = 6.624 \times 10^{-7}$ and $e = 1.602 \times 10^{-7}$).	

Que. 3		
a	Explain in brief doppler shift.	2 credit point
b	A satellite system has a 4db receiver with the following gains and noise	2 credit point
	temperature $T_{in} = 25K$, $T_{RF} = 50 \text{ K}$, $T_{IF} = 1000 \text{ K}$, $T_m = 500K$, $G_{RF} = 23 \text{ dB}$,	
	$G_{IF} = 30$ dB. Calculate the system noise temperature, assuming the mixer	
	has a gain Gm=0dB. Recalculate the system noise temperature when the	
	mixer has 10 dB loss. How can the noise temperature of the receiver be	
	minimized when the mixer has a loss of 10 dB?	
c	Explain in brief the principle of GPS position location.	2 credit point
d	Explain with the help of neat diagram, the macrobending and microbending	2 credit point
	losses in optical fiber.	1
e	Define and explain the following with reference to LASER	1 credit point
	1) Differential external quantum efficiency	1
	2) Internal quantum efficiency	
	3) External quantum efficiency	
	4) External power efficiency	
f	Explain with the help of neat diagram the principle of operation of	1 credit point
	germanium avalanche photodiode.	1
Oue. 4	<u> </u>	
a	A satellite is an elliptical orbit has a perigee of 1000 Km and an apogee of	2 credit point
	4000 km, using mean earth radius of 6378.14 km, find the period of the	1
	orbit in hours, minutes and seconds, also find the eccentricity of the	
	orbit(given that $\mu = 3.986004418 \times 10^5$).	
b	A satellite is operated at an EIRP of 56 dB W with an output back off BO	2 credit point
	of 6 dB. The transmitter feeder losses amount to 2dB and the antenna gain	1
	is 50 dB. Calculate the power output of TWT amplifier required for full	
	saturated EIRP	
c	Explain with the help of neat diagram the principle of operation of VSAT	2 credit point
	earth station.	1
d	A relative refractive index difference for an optical fiber, designed for long	2 credit point
	distance transmission is 1%. Estimate the numerical aperture and solid	1
	acceptance angle in air for the fiber when the core refractive index is 1.46.	
	Further calculate the critical angle at core cladding interface within the	
	fiber.	
e	The radiative and non-radiative recombination lifetime of minority carrier	1 credit point
	in the active region of a double heterojunction LED is 60 nsec and 100 nsec	1
	respectively. Determine the total carrier recombination lifetime and the	
	power internally generated within the device when the peak emission	
	wavelength is 0.87μ m at a drive current of 40 mA. (given that $h = 6.624 \times$	
	10^{-34} and $e = 1.602 \times 10^{-19}$).	
f	When 3×10^{11} photons each with a wavelength of 0.85µm are incident on a	1 credit point
	photodiode, on average 1.2×10^{11} electrons are collected at the terminal of	Ŧ
	the device. Determine the quantum efficiency and responsively of the	
	photodiode at 0.85 μ m. (given that h = 6.624 × 10 ⁻³⁴ and e = 1.602 × 10 ⁻¹⁹)	