SANT GADGE BABA AMRAVATI UNIVERSITY, AMRAVATI

Summer Examination 2020

HVPM's College of Engineering and Technology, Amravati

Department of Electronics & Telecommunication Engineering

Bachelor of Engineering Sem :- VII

Subject: SOFC

Code: 7XT4

Instructions:

1) Solve any two questions

2) All questions carry equal marks

Que 1.		
a	State and prove Kepler's third law.	2 credit point
b	Explain in brief the concept of noise temperature in satellite link with the help	2 credit point
	of necessary expression.	-
c	Explain in brief two-way implementation architecture for VSAT network.	2 credit point
d	Explain with the help of neat diagram the light propagation in parabolic	2 credit point
	profile graded index fiber. Also state no of supported modes. Enlist the	
	advantages of graded index multimode fiber over step index multimode fiber.	
e	Discuss the mechanism of optical feedback to provide oscillation and hence	1 credit point
	amplification within the laser.	
f	Explain wavelength division multiplexing.	1 credit point
Que. 2		
a	Explain in brief Solar Eclipse.	2 credit point
b	Discuss the various parameter to be considered while designing a	2 credit point
	downloading budget in satellite communication system.	
c	Explain in brief the satellite signal acquisition in GPS.	2 credit point
d	When the mean optical power launched into 8 km length of the fiber is 120μ W,	2 credit point
	the mean optical power at the fiber output is 3μ W. determine 1) overall signal	
	attenuation in dB, assuming no connectors and splices in between. 2) the	
	signal attenuation per kilometer of the fiber 3) the overall signal attenuation	
	for a 10 km optical link using the same fiber with splices at 1Km interval,	
	each giving attenuation of IdB.	4 41 1
e	A germanium p—1—n photodiode with active dimensions of 100×50 It has a	I credit point
	quantum efficiency of 55% when operating at a wavelength of 1.3 The	
	measured dark current at this wavelength is 8 nA. Calculate the noise	
f	Describe with the help of suitable block diagram, the operation of an optical	1 credit point
	fiber regenerative repeater Indicate reasons for the occurrence of bit errors in	i cican point
	the regeneration process and outline a technique for establishing the quality of	
	channel	
Oue. 3		
a	Explain in brief doppler shift.	2 credit point

b	A satellite system has a 4db receiver with the following gains and noise	2 credit point
	temperature $T_{in} = 25K$, $T_{RF} = 50 K$, $T_{IF} = 1000 K$, $T_m = 500K$, $G_{RF} = 23 dB$, G_{IF}	-
	= 30dB. Calculate the system noise temperature, assuming the mixer has a	
	gain Gm=0dB. Recalculate the system noise temperature when the mixer has	
	10 dB loss. How can the noise temperature of the receiver be minimized when	
	the mixer has a loss of 10 dB ?	
c	Explain in brief the principle of GPS position location.	2 credit point
d	Explain with the help of neat diagram, the macrobending and microbending	2 credit point
	losses in optical fiber.	
e	Derive an expression for the coupling efficiency of a surface emitting LED	1 credit point
	into a step index fiber, assuming the device to have a Lambertian output.	4 41
f	A digital optical fiber system uses an Return to zero (RZ) pulse format. Show	l credit point
	that the maximum bit rate for the system B1(max) may be estimated using	
	BT(max) = 0.35 / Tsyst	
	where Tsyst is total system rise time.	
Oue. 4		
a	A satellite is an elliptical orbit has a perigee of 1000 Km and an apogee of	2 credit point
	4000 km. using mean earth radius of 6378.14 km, find the period of the orbit	-
	in hours, minutes and seconds. also find the eccentricity of the orbit (given	
	that $\mu = 3.986004418 \times 10^{5}$)	
b	A satellite is operated at an EIRP of 56 dB W with an output back off BO of 6	2 credit point
	dB. The transmitter feeder losses amount to 2dB and the antenna gain is 50 dD. Coloulate the neuron output of TWT excelling required for full extracted	
	GB. Calculate the power output of 1 w 1 amplifier required for full saturated	
	EXAT. Explain with the help of neat diagram the principle of operation of VSAT.	2 credit point
Ľ	earth station	2 crean point
d	A relative refractive index difference for an optical fiber, designed for long	2 credit point
	distance transmission is 1%. Estimate the numerical aperture and solid	
	acceptance angle in air for the fiber when the core refractive index is 1.46.	
	Further calculate the critical angle at core cladding interface within the fiber.	
e	Define the quantum efficiency and responsivity of a photodetector. Derive an	1 credit point
	expression for responsivity of an intrinsic photodetector in terms of the	
A	quantum efficiency of the device and the wavelength of the incident radiation	1
f	Develop a relationship between the error probability and the received SNR for	i credit point
	a baseband binary optical neer system. Assume that number of ones and zeros	
	one and zero level	