SANT GADGE BABA AMRVATI UNIVERSITY, AMRAVATI Summer Examination 2020

HVPM's College of Engineering and Technology, Amravati Department of Electronics & Tele communication Engineering

Bachelor of Engineering Sem. :- VII

Subject :- DIGITAL SIGNAL PROCESSING

Code :- 7XT3

Instructions:-

1) Solve any two questions

2) All question carry equal marks

_	All question carry equal marks	
Que.		
a	Write the advantages of digital signal processing	1 credit poir
	(DSP) over analog signal processing (ASP).	a steam poin
b	If $x(z) = z/z-a$, $n \ge 0$	2 credit poin
	find z ⁻¹ using method of residue.	8 8 12
C	If $x(n) = \{1 \ 1 \ 0 \ 0\}$ find 4-point DFT by matrix method.	2 credit poin
d	Sketch direct form for the FIR System	2 credit poin
	$H(z) = 1 - 2 Z^{-1} + 1/2 Z^{-2} + \frac{1}{2} Z^{-3} - \frac{1}{2} Z^{-4}$	2 credit poin
е	Draw direct I direct II form of the filter represented by,	2 credit point
	$y(n) = \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n) + \frac{1}{4}x(n-1)$	
f	State & explain various applications of multirate	1 credit point
	digital signal processing.	oreant point
Que. 2		
a	A discrete time sequence is	1 credit point
«	$X(n) = 1 + n/3$; $-3 \le n \le -1$	- orean point
	$=1$, $0 \le n \le 3$	
-	= 0 Elsewhere	
b	State and Explain any two properties of Z-	2 credit point
	transform.	
С	Obtain circular convolution by matrix method if $x_1(n) = \{1, 2, 2, 1\}$	2 credit = -int
	$(1221) \times x_2(n) = \{1231\}$	2 credit point
d	Draw linear phase structure for	2 anadit
	$h(n) = \{ 1 \ 2 \ 3 \ 3 \ 2 \ 1 \}$	2 credit point

e	If $Ha(s) = 1/(s+1)(s-2)$, using impulse invariant	2 credit point
	method, find H (z) for sampling frequency 10 Hz.	
f	Draw & explain the architecture of DSP processor	1 credit point
	TMS 320C54XX	
Que. 3		
a	Determine if the systems described by the following	2 credit point
	input – output are linear or non-linear	
	i) $y(n) = n x(n)$ ii) $y(n) = x^2(n)$,
b	Define region of convergence (ROC) & explain	2 credit point
	different properties of ROC.	
С	Find 4-point DFT using DITFFT algorithm for	2 credit point
	$x(n) = \{1 \ 1 \ 0 \ 0 \}$	·
-	T	
d	Design an FIR digital filter to approximate an ideal	2 credit point
	low filter with pass band gain of unity , cut-off	*
	frequency of 850 Hz & working at sampling	» ²
	frequency fs =5000 Hz. The length of impulse	
	response should be 5. Use a rectangular window	
e	If Ha (s) = $1/(s+0.1)^2+9$	1 credit point
	Find H(z) by approximation of derivative	
	method for $T = 1$ Sec. and realize using direct	
	form.	
f	Find the expression for the output y(n) in terms of	1 credit point
	input x(n) for the multisampling rate system given	
	as follows:-	
	x(n) Input 5 20 4	
	output y(n)	9 1

Que. 4		,
a	If a discrete time sequence x(n) is	1 credit point
-	$X(n)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Sketch (i) \times (n-2) (ii) \times (2-n)	
-	(iii) x (n) . 4 (2-n) (iv) x (n²)	* * * * * * * * * * * * * * * * * * *
b	Solve y (n+2) – 5 y(n+1) + 6 y(n) = y(n) with initial condition y(0) =0 & y (1) = 1	1 credit point
С	If $X(K) = \{2, 1-j, 0, 1+j\}$, find 4 point IDFT.	2 credit point
d	Realize digital filter for $H(Z) = 1 - 3/4 Z^{-1} + 1/8 Z^{-2}$ in cascade form.	2 credit point
e	Realize the filter $H(z) = \frac{1+1/3 \chi^{-1}}{1-3/4 \chi^{-1}+1/2 \chi^{-2}}$	2 credit point
	1-3/4天 ¹ +1/g天 ² In cascade form.	
f	Write short notes on:-	2 credit point
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i) Decimator ii) Interpolator	e e
